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The onset of spin-glass freezing in dilute Ising systems with long-range interac-
tions is investigated with the use of numerical simulations. We show that taking
pair correlations explicitly into account results in the renormalization of the
interaction matrix and suppression of the density of localized states compared
with conventional mean field theory. Application of the theory to the R K K Y
interaction in the dilute limit raises the question of the appropriate boundary
eigenvalue of the effective interaction matrix that separates localized and
extended states. We identify the onset of spin-glass freezing with the temperature
Tg at which this boundary eigenvalue is equal to one. Numerical simulations
reproduces the linear concentration dependence of Tg in the very dilute limit, in
agreement with scaling relations, and show a significant improvement over the
conventional mean-field theory in the value obtained for the freezing tem-
perature.

KEY WORDS: Spin glasses; long-range interactions; freezing temperature;
localized and extended states.

1. INTRODUCTION

In this paper we concentrate on the estimation of the spin-glass freezing
temperature Tg of the dilute Ising spin glasses with long-range interactions.

As an example we consider the RKKY interaction
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that is a consequence of the special form of RKKY interaction,(3,4)

J i jccr i j
- 3 , has been reproduced only recently(5) with the use of computer

simulation techniques applied to the mean field equations.
It should be mentioned also that in a major number of previous papers

the analyses of the experiment in real spin glasses has been performed in
terms of the configurational average value of Edwards-Anderson (EA)
order parameter q. The validity of such an assumption implies that spatial
fluctuations of q are not very large. However the latter is in apparent
contradiction with recent experiments(6) indicating the inhomogeneous
structure in AuFe. Inhomogeneous spin-glass structure has also been found
in CuMn.(7) These experimental findings seems to be consistent with recent
Monte Carlo simulations(8) and earlier mean field analysis(9) of short range
spin glasses. It has been emphasized,(8) based on the Monte Carlo results,
that the description in terms of configurational average value of q is not
even qualitatively valid near Tg. (See also ref. 10.)

Another approach to the problem has been proposed long ago by
Anderson.(11) The straightforward way to find Tg in mean field approxima-
tion is the diagonalization of the random matrix Jij and the identifying of
Tg with the maximum eigenvalue of the matrix. However, in the applying
such a procedure to dilute systems with random interactions additional
complications are encountered due to the existence of the localized states
of the Jij matrix the latter being associated with small clusters of strongly
interacting spins. It is clear however, that localized states are not respon-
sible for the collective behavior of the system which is a property of delo-
calized, extended states.

In order to estimate the freezing temperature one needs to find a
characteristic boundary (or "mobility edge") between localized and
extended states. Although this issue has been widely discussed in the
paste,(11-13) untill recently(5) there was no implicit implementation of the
approach to dilute spin glasses with long-range interactions. In ref. 5 we
analysed the linearized local mean field equations
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where Jij = J ( r i j ) is the interaction between spins separated by the distance rij,
kF is a Fermi vector of the conduction electrons.

Although this issue has been under discussion almost 20 years,(1-3)

a reliable estimation of Tg has not been given. Moreover, even the
apparent scaling law
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in terms of the eigenvalues of the matrix Jij. {Sty is the thermal average
value of the ith spin.

In this paper we go beyond mean field theory and analyze the correc-
tions to the mean field equations using the concept of effective interaction,
and replacing the matrix J i J/T in Eq. (3) by the effective interaction matrix
cPij which takes into account the effect of fluctuations. In order to obtain
the effective interaction matrix we use the Zernike approximation,(14)

originally proposed for Ising model of regular ferromagnets. Kaneyoshi(15)

employed this approximation to spin glasses with nearest neighbors inter-
actions using the techniques of differential operators. We use another
approach starting from the evaluation of the distribution function of local
field acting on every spin due to its interaction with other spins. The
essence of the approximation is in the neglect of correlations between spin
contributing to local field, and in this sense we use the terminology "ran-
dom local field" (RLF) approximation. Contrary to mean field theory we
take explicitly into account the pair correlations between the given spin
and each of the spins contributing to the local field. The RLF approxima-
tion has been applied earlierp(16) for dilute ferromagnets and ferroelectrics.
It has been shown that for ferromagnetic models the accuracy of RLF
approximation is the same as the accuracy of Bethe-Peierls cluster result.
The degree of accuracy of RLF approximation to spin glasses with long-
range interactions is discussed in Section 4 in comparison with the known
results for the Sherrington-Kirkpatric (SK) model(17) and EA model with
nearest neighbor interactions(18)

It is also important to note that in the framework of RLF approximation
one takes explicitly into account the nonlinear coupling between eigenmodes
of the matrix Jij that leads to the renormalized effective interaction cPij.
Such an effective interaction was originally discussed in the model calcu-
lations(12) based on <p (4) theory with the use of independent modes
approximation. It has been shown(12) that nonlinear coupling leads to the
suppression of the weight of localized states. We will show in Section 3 that
our approach reproduces for the first time this effect for the RICKY spin
glasses and takes into account nondiagonal interactions in the Jij basis as
well as diagonal interactions.

2. RANDOM LOCAL FIELD APPROXIMATION

In order to understand at least qualitatively how crucial is the effect
of thermal fluctuations on the freezing temperature in spin glasses with
long-range interactions we consider below the first order corrections to
mean field theory based on the random local field approximation.
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In the development of random local field approximation we start from
the identity(19,20)

here

is the local field acting on every spin due to interaction with its neighbors.
Equation (4) can be written in the form

where

Note that the function f i ( H ) in Eq. (7) is the exact distribution function of
local field acting on spin i. Local mean field equation (3) corresponds to
the approximation f i ( H ) = d(H-(H,}).

Using the integral representation of the delta function and the fact that
one has Si2n = 1 and Si2n + 1 = Si we rewrite Eq. (7) as

in which

In order to calculate the spin-glass transition temperature it is sufficient
in Eq. (9) to keep only terms linear in < S i > . We also neglect correlations
between different spins k, k',... interacting with spin i, which is equivalent to
Zernike approximation. When this is done, the expression for fip assumes
the form
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Only the second term in Eq. (10) which depends on <S j > contributes
to Eq. (6). We make the replacement

where overbar denotes the configurational average over random spin posi-
tions, based on the fact that the cosine function partially suppresses the
effect of fluctuations in Jij that originates from the variable sign inter-
actions. Equation (11) is the exact result for the infinite range SK model
with

and for ±J nearest neighbor interaction.
In dilute systems (c« 1) in which the randomness in the interaction

stems from the random occupation of the lattice sites (as in the case of
RKKY interaction), the result of the configurational average in Eq. (11)
can be written in the form exp[ — F1 (p)], where F 1 (p) is given by

where the summation in Eq. (13) is taken over all lattice sites.
Using Eqs. (8) and (10) in Eq. (6), along with the identity

we obtain the equation

where

It follows from Eqs. (15), (16) that effect of thermal fluctuations, explicitly
taken into account in Eq. (6), (7), leads to the renormalization of inter-
action matrix in linearized equations for local magnetization. This results
is consistent with the earlier discussions.(13)
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Note that the linearized Thouless-Anderson-Palmer(TAP) equa-
tions(21) obtained for SK model can be written in the form of Eq. ( 1 5 ) with
the effective interaction

^AP takes into account the effect of thermal Gaussian fluctuations of the
local field, characterized by the variance J2, and reproduces the effect of the
Onsager reaction field. The TAP approach can not be generalized on non-
Gaussian fluctuations of the local field as takes place in the case of the
RKKY interaction. In contrast to TAP approach, our approach allows
to consider in approximate manner Gaussian as well as non-Gaussian
fluctuations.

It follows from Eq. ( 1 6 ) that the linear dependence (t>iJ/T(corresponding
to mean field theory) is approximately valid only for Ji j/T« 1. At higher
values of Jy/T the effective interaction matrix <£,-, deviates significantly from
Jij/T and saturates to <J)ij= 1. As we show below, this results in the sup-
pression of the effect of local clusters on the distribution of eigenvalues of
matrix 0,-, (compared with that in mean field theory)(15) and in the relative
decrease of the density of localized states.

3. RESULTS OF NUMERICAL SIMULATIONS

We have performed the numerical solution of Eqs. ( 1 5 ) using com-
puter simulation techniques. We randomly distributed approximately
N = 900 Ising spins on a simple cubic lattice with periodic boundary condi-
tions, where the size of the lattice had been adjusted to the spin concentra-
tion. We then calculated all eigenvalues Ek (k = 1 , . . . , N ) of the matrices
<f>ij(T). The value k F =3/d (d is the lattice constant) has been chosen in
Eq. (1) which corresponds approximately to the Cu in a sense that the
product of kF3 and the volume per lattice site is approximately the same as
in real material.

The crossover between localized and extended states has been exten-
sively studied(22-24) in connection with the problem of Anderson localiza-
tion. It has been shown that the boundary between localized and extended
states is usually rather sharp, and the characteristic eigenvalue of the effec-
tive interaction matrix for which a relative variance in the distribution of
eigenvalues is equal to 1/2 can be considered as a simple criterion deter-
mining the crossover between localized and extended states. The relative
variance (that is the ratio between the variance and the distribution function)
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approaches 1 for Poisson statistics, that are a characteristic of localized
states, and is much less than 1 for extended states.

In order to calculate the distribution function of the eigenvalues we
divided the interval [ -R, R] into 200 subintervals and collected the number
n(E) of eigenvalues in each subinterval. This was repeated for 100 different
random configurations of the spins and the results averaged. The distribution
function was written as

where M is the normalizing coefficient.
In the same manner we calculated the variance of the eigenvalue

distribution

We have tested the effect of finite lattice size by comparing the results
obtained for 900 spins with those for 1300 spins. No noticeable difference
in eigenvalue distribution was found.

We have also considered another very common localization measure,
the inverse participation ratio, IPR(E), for the eigenvalue E, defined as

where f j ( E ) , j= 1,..., N, are the corresponding eigenvector components.
Because £,- ^=1, the IPR should be very small, i.e. proportional to I/TV
for very delocalized states, and approaching 1 only in the opposite limit of
extreme localization. The results of a numerical diagonalization of the
matrix <t>ij(T) are presented in Figs. 1, 2 for two concentration of spins
c = 0.02 and c = 0.04 and different temperatures. For convenience we pre-
sent on the same graph the values of distribution function a(E), variance
var(E), and inverse participation ratio IPR(E).

One can clearly see that extended states responsible for the collective
behavior are confined within a region inside the central peak. In this region
both criteria for extended states are satisfied: ratio var( E )/a(E) < 1/2 and
IPR(E) is very small. Also, in spite of the noticeable fluctuations of the
var(E) inside the central peak, one can see that the variance undergoes a
crossover behavior near the value Em for which the ratio var(Em)la(Em) %
1/2. Above Emvar(E) rapidly approaches the values of a(E) which is an
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Fig. 1. Eigenvalue distribution function, a(E) (solid line), variance, var(£) (crosses) and
inverse participation ratio I P R ( E ) (diamonds) corresponding to random local field matrix <P/j,
Eq. ( 2 1 ) for c = 0.02 and different temperatures. Vertical dashed line denote the position of
crossover eigenvalue £„,.
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Fig- 1. (Continued)

indication of complete localization so we consider the eigenvalues E,,, as
the edge of extended states for the given spin concentration and temperature.

First of all one should verify that the freezing transition does exist
within the approach used. Note that this problem is not in question within
the conventional mean field theory, Eq. (3), for which all eigenvalues are
proportional to l/T and the criterion Em=\ can always be satisfied. In
contrast, as we discussed above, the matrix <£>y has a well defined finite
limit C^ySmax"* 1 as T-*0 and in this case the existence of the thermo-
dynamic freezing transition is the intrinsic property of the model and is
characterized by the maximum eigenvalue of the <t>tj matrix at T— 0 corre-
sponding to extended states. (Note that <£,y is a monotonically decreasing
function with increasing T.)

In Fig. la, and Fig. 2a we present the spectrum of eigenvalues, var(E)
and IPR( E) of 0,y matrix for c = 0.02 and c = 0.04 at T= 0. One can clearly
see that the eigenvalue E = 1 is below the edge of extended states, that is
£,„%!.2 for both concentrations. This shows that a freezing transition
associated with the extended states does exist for 3 dimensional RKKY
Ising spin glasses in agreement with the Monte Carlo results.<25)

In order to find the estimate for the TK we have performed numerical
simulations for different temperatures using the values of <P:j matrix given
by Eq. (16). We then identified Tg with the temperature for which £,„=!.
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Fig. 2. Eigenvalue distribution function, a(E), variance, var(E) and inverse participation
ratio I P R ( E ) corresponding to random local field matrix 0,y, Eq. ( 2 1 ) for c = 0.04 and
different temperatures.
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Fig. 2. (Continued)

Spectra of eigenvalues at T=TK, are presented on Fig. Ib and Fig. 2b
From Fig. 2c and Fig. 3c one can see how different the spectra are at T well
above T^, where £„,<!. I.e. the relative weight of the localized states
decreases while temperature approaches TK from above. This property of
the localized states in spin glasses has been already discussed<12) in model
calculations.

We found TK»0.07 ±0.01 (\A\/d*) for c = 0.02 and Ts = 0.13 ±0.01
( \ A \ / d 3 ) for c = 0.04. Also we performed additional calculations for c = 0.03
and found Tx^0.\ ±0.01 ( \ A \ / d 3 ) . TK scales practically linearly with con-
centration and can be written as

Note that the values of TK given by Eq. (21) are approximately one-half of
the corresponding values for TK in the mean field simulations,'5) that is a
significant improvement over the conventional mean field theory.

As regards the experimental situation, almost linear concentrational
dependence of freezing temperature has been observed in very dilute CuMn
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Fig. 3. Eigenvalue distribution function, a(E), variance, var(E) and inverse participation
ration I P R ( E ) corresponding to £ t j , Eq. (27) for nearest neighbor interaction on a 3d cubic
lattice.

and AgMn alloys.'3-26' See also recent results.'271 Unfortunately, we are not
able to compare numerically Eq. (21) with the experiment due to the
Heisenberg rather than Ising nature of canonical spin glasses. However, the
concentration dependence of Tg should be the same for both Heisenberg
and Ising models, since it is caused by the specific form of RICKY inter-
action J ( r ) ~ r 3 .

4. DISCUSSION

1. The results obtained in the preceding section establish apparently
the upper limit for the freezing transition temperature in RK.KY Ising spin
glasses (that is twice lower its mean field value). A question arises how far
this upper limit is from the true value of TK. A qualitative answer to this
question can be given by applying the method used to other models for
which the values of Tg are known. We will consider below the SK model
with J/j given by Eq. (12), and EA model with ±J nearest neighbor inter-
actions.
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SKmodel. Substituting Eq. (12) into Eq. (10) we obtain F(p)=p2J2/2,
while sin(pJjj) can be replaced by its argument. The matrix <£,., then
assumes the form

We note that for infinite range interactions all eigenvectors of the
random matrix <P^f are delocalized,(21>28) and the transition temperature
can be identified with the temperature at which the largest eigenvalue of
the matrix <Ptj is equal to one. Since the largest eigenvalue of the matrix
(12) is equal to 2,7, one obtains an expression for Tg by numerically
evaluating the integral in Eq. (22). The result is

which is half way between the mean field and exact results, and, thus, is a
significant improvement of the former. The same result for Tg is obtained
for SK model with a gausssian distribution of Jtj as well.

+ J nearest neigbor interactions. This model can be considered as an
opposite limit to SK model in a sense of effect of thermal fluctuations. The
fluctuations decrease significantly the numerical value of Tg for 3 dimen-
sional systems and completely destroy the spin glass equilibrium phase for
d = 2.(29> Very precise calculations'30' of Tg for ±J is nearest neighbor
interactions model give Tg v 1.2 for 3d cubic lattice. Let us compare this
value with that given by RLF approximation.

In order to perform numerical calculations we write the matrix #>y in
the form

where

and

z is the number of nearest neighbors.
Calculations have been performed in the same way as discussed in

Sec. 3. According to Eq. (24) each eigenvalue of the matrix <Ptj is equal to

822/90/3-4-24
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the product of <P(T} and the corresponding eigenvalue of the matrix £,y.
Spectrum of the eigenvalues of the matrix £/y. is presented in Fig. 3. One can
see that almost all eigenvalues are extended and the maximum eigenvalue
of the £tj matrix is equal to 4.5. This value has been reported earlier.19'
However, from the ratio between the distribution function of the eigen-
values and the variance we conclude that the boundary between localized
and extended states Em x 4.3. In order to find the spin-glass freezing trans-
ition temperature one should numerically solve the equation

that gives

One can argue that the value Tc = 2.9J is higher than Tc = 2.45J for z = 6
that would be obtained by simply scaling the SK result by the square root
of the number of nearest neigbors. However, the latter estimate is purely
phenomenological since it includes Onsager reaction field, obtained for
infinite range SK model, in short range EA model.

2. One can speculate further about the actual value of the transition
temperature Tg for RKKY interaction. Due to the long-range nature of the
RKKY interaction one can expect that the ratio between exact (presently
unknown) value of Tg and TfLF, Eq. (21), should be greater than that for
nearest neighbor interactions and less than that for infinite range SK
model. T.e

or, using Eq. (21),

One can expect that in inequality (30) the values of Tg should be
closer to the right hand side limit due to the long-range nature of the
RKKY interaction.

3. Finally, we discuss the question of the sensitivity of the RLF to the
dimension of the system. In the framework of mean field equations (3)
Tg^0 for any dimension. At the same time RLF approximation establishes
the well defined criterion for the existing of freezing transition.
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Taking into account that function <P(T) in Eq. (27) monotonically
increases as T approaches to zero, we can write the criterion that Tg + 0 in
the form

We have performed numerical simulations of Eq. (15) for d—\ and
d=2. We found that for d = 1 £ < 1 meaning that equilibrium freezing
transition does not exist. For d = 2 the boundary eigenvalue separating
localized and extended states £m%3.2 that gives £«!.!. This results is in
apparent contradiction with presently established fact that for Ising spin
glasses the lower critical dimension is between 2 and 3 and indicates the
limitation of RLF approximation to low dimensional systems. However,
the obtained value £«1.1 for d = 2 is lower the value £«1.3 for d=3
reproducing qualitatively the increasing role of thermal fluctuation with the
decrease of the dimension of the system.

5. CONCLUSION

In conclusion, we have shown that the RLF approximation combined
with the computer simulation technique allows to find a crossover between
localized and extended states and estimate the freezing temperature in Ising
spin glasses with long-range interactions. The analysis suggested can be
easily applied to the situations where the interaction Jtj has the more com-
plicated form than considered above, e.g., when the mean free path of con-
duction electrons A is comparable with the average distance R between
spins and the dependence of Tg on the concentration c changes with the
change of the parameter RjL
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